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REVERSING PROPERTY RIGHTS:PRACTICE-BASED

APPROACHES FOR CONTROLLING AGRICULTURAL

NONPOINT-SOURCE WATER POLLUTION WHEN EMISSIONS

AGGREGATE NONLINEARLY

SERGEY S. RABOTYAGOV, ADRIANA M. VALCU, AND CATHERINE L. KLING

Nonpoint-source water pollution remains a major issue despite decades of research and sizable
conservation programs. We suggest that by taking advantage of contemporary modeling and opti-
mization approaches, good approximations to physical relationships can be constructed so that
even in the presence of unobservable field emissions and nonlinear fate and transport relation-
ships, standard economic tools of command-and-control requirements, performance standards, and
trading can be implemented. The Boone River Watershed in the U.S. state of Iowa is used for
empirical demonstration. Although the approach can be used to construct voluntary conservation
policies, the described policies involve imposing requirements on agricultural polluters rather than
relying on voluntary actions alone.

Key words: agricultural conservation practices, agricultural nonpoint-source pollution, conser-
vation policy, cost-effective policy design, evolutionary algorithms, multi-objective optimization,
performance standards, water quality trading.
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The emission of nutrients and sediment
from agricultural fields remains a signifi-
cant pollution problem across a substantial
portion of the United States. Recent data
from the National Summary of Assessed
Waters Report by the US Environmental
Protection Agency (US EPA) indicates that
53% of the assessed rivers and streams, and
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over 65% of the assessed lakes are water
quality impaired, and that progress over the
past decade has been largely nonexistent
(figure 1).1 In these assessments, agriculture
is identified as the leading source of river and
stream impairments, and is the third-largest
source of lake, pond, and reservoir impair-
ments. Emphasizing the role of agriculture
in this problem, Ribaudo, Heimlich, and
Peters (2005) note that in two-thirds of the
700 nitrogen-impaired watersheds across the
United States, completely eliminating point
sources would reduce nitrogen contributions
by only 10% or less. Thus, if progress is to be
made in reducing water quality impairments,
significant reductions in nutrient inputs from
agriculture are necessary.

The Clean Water Act passed in 1972
remains the primary federal legislation for
addressing water quality problems from both
point and nonpoint sources (Shabman and
Stephenson 2007). The legislation placed the
property rights with respect to emissions
from point sources in the hands of the
public: point sources of water pollution are

1 http://www.epa.gov/waters/ir/index.html
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legally required to hold permits to cover any
release into the nation’s waterways, and face
penalties for noncompliance. Implementing
approaches to reduce emissions from non-
point sources are largely under the purview
of states via the Total Maximum Daily Load
(TMDL) program. Under this program,
states are tasked with identifying the sources
of urban and agricultural nonpoint source
emissions that lead to waterway impairments,
and also with implementing approaches to
reduce those impairments. In most cases,
states have chosen to adopt voluntary
approaches that depend on moral suasion or
conservation payments to induce farmers to
adopt conservation practices. This effectively
assigns farmers the property rights to pollute.

However, there are cases where states
have opted to reverse this property right.
A notable example is in Florida, where as
part of the Everglades Forever Act, passed
in 1996, the South Florida Agricultural Man-
agement District has established mandatory
nonpoint source control to lower the phos-
phorus levels in the Everglades Agricultural
Area (EAA) by implementing a best man-
agement permitting program. The program
includes performance metrics for each best
management practice, on-site verification,
and monitoring to ensure that the conserva-
tion practices are implemented consistently,
and recommends adjustments if the water
quality goals are not achieved. The program
also has a research component that continu-
ally revises and improves the recommended
best management practices.2 Each landowner

2 http://www.sfwmd.gov/portal/page/portal/xweb%20protecting
%20and%20restoring/best%20mangement%20practices.

in the EAA must hold a permit that includes:
(a) an approval for a best management prac-
tice for each crop or land use (designated
in terms of “points” of conservation credit)
and; (b) an approval for a discharge moni-
toring plan.3 Over the 17-year history of the
program, measureable reductions in ambient
pollution from these sources have averaged
over 55% (Daroub et al. 2011; Smith 2012).

Environmental and agricultural economists
have been studying the design of efficient
programs to address nonpoint-source (NPS)
water pollution from agriculture for decades.
Issues studied extensively include taxes, sub-
sidies, and standards capable of achieving
the first-best outcomes (Griffin and Bromley
1982; Shortle and Dunn 1986; Shortle and
Horan 2001). Two recent comprehensive sur-
veys provide excellent reviews of the policy
instruments for water quality pollution, with
particular attention paid to the instruments
for nonpoint source pollution (Shortle and
Horan 2013) and drinking water (Olmstead
2010). Much of the NPS work has focused
on the design of these programs in the con-
text of the existing regulatory structure and
the associated focus on the voluntary adop-
tion of abatement actions from agriculture
(Ribaudo et al. 2008; Braden et al. 1989; Wu
and Babcock 1996; Carpentier, Bosch, and
Batie 1998; Khanna et al. 2003). Russell and
Clark (2006) call for the public to assert its
control over NPS pollution, especially in
developing countries where subsidies may be
infeasible. Starting in the 1980s, and following
their success in addressing air pollution, mar-
ket mechanisms for water quality attracted

3 http://www.sfwmd.gov/portal/page/portal/xweb%20-%20
release%202/everglades%20wod%20permits.

http://www.sfwmd.gov/portal/page/portal/xweb%20protecting%20and%20restoring/best%20mangement%20practices
http://www.sfwmd.gov/portal/page/portal/xweb%20protecting%20and%20restoring/best%20mangement%20practices
http://www.sfwmd.gov/portal/page/portal/xweb{%}20-{%}20release{%}202/everglades{%}20wod{%}20permits
http://www.sfwmd.gov/portal/page/portal/xweb{%}20-{%}20release{%}202/everglades{%}20wod{%}20permits
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the attention of economists and policy mak-
ers, with a large body of literature emerging
as a result. For example, Fisher-Vanden and
Olmstead (2013) and Shortle (2013) assess
the current status of the water quality pro-
grams in the United States and worldwide,
respectively. These authors provide useful
insights about lessons learned so far, as well
about the research needs for improving the
efficiency of the trading markets for water
quality.

In this article we consider the design of
policies to address NPS pollution after the
current property rights have been (or can
be) reversed. Specifically, we examine the
efficient design of agricultural water pollu-
tion control when the state or local regulator
has the option of imposing regulations or
standards (either tradable or otherwise) on
agricultural nonpoint sources. We do not
suggest that such policies are likely to be
adopted broadly in the near term, and recog-
nize the important political economy issues
associated with a change from historical
property rights. However, the Florida case
and examples elsewhere (e.g., Maryland has
recently imposed stricter nutrient manage-
ment plan requirements on farmers, including
a ban on winter fertilizer applications and a
requirement for crop setbacks near water-
ways) suggests that serious analysis of these
options is timely, particularly given the sig-
nificant water quality problems remaining in
agricultural watersheds.4,5

In considering the design of programs to
reduce agricultural nonpoint source emis-
sions we focus on several difficult issues that
have challenged regulators in policy design,
regardless of the property rights assignment.6
First, producers have a variety of conserva-
tion practices from which to choose, many
of which impose both direct and implicit
costs (lost yield, additional risk, etc.) that
are likely to vary by farm characteristics, cli-
mate, and other idiosyncratic farm features.
Thus, individual producers are quite likely
to have better information about their true

4 Internationally, the Lake Taupo trading program in New
Zealand serves as an example of a trading program imposed
solely on NPS polluters (Shortle and Horan 2013).

5 http://mda.maryland.gov/resource_conservation/
counties/Read%20the%20Revised%20Regs.pdf

6 The approaches considered in this article can be modified to
apply to cases where farmers have property rights as well. We
focus on the hypothetical reversal of property rights for reasons
of brevity, but also because without such reversals, limited public
funds are unlikely to be sufficient to reduce NPS problems to
levels consistent with the Clean Water Act objectives.

cost of adopting conservation practices than
regulators. From the regulators’ perspective,
this means that it will generally be difficult
to identify ex ante the least-cost allocation of
emission reductions efficiently across sources:
it follows that market-based instruments have
the potential to improve efficiency (Shortle
1990; Malik, Letson, and Crutchfield 1993).

A second difficulty relates to observing and
monitoring the pollution impacts of farm-
ing activities on water quality. Although it
may be technically possible in some cases to
measure nutrients that leave a field (e.g., by
monitoring tile drains for nitrogen concen-
trations), the cost is likely to be prohibitive
and monitoring is often not viable. Thus,
focusing on observable abatement actions
and/or observable inputs has been suggested
(Griffin and Bromley 1982; Shortle and Dunn
1986). As previous researchers have noted,
this approach can come at a high efficiency
cost if practice or input-based approaches do
not allow targeting conservation actions to
fields where they are most cost-effective.

Third, issues of characterizing pollution
do not stop at the field scale. The ultimate
fate and transport of these emissions once
they leave the edge of a field and find their
way into the water bodies of concern is an
area with interesting theoretical and prac-
tical implications. While many theoretical
papers often postulate that the fate and
transport process is linear and separable
between emissions from various fields, water
quality researchers note that this process is
actually likely to be highly nonlinear and
nonseparable, which introduces the problem
of endogeneity in the impact of an individual
farmer’s actions (Braden et al. 1989; Lintner
and Weersink 1999; Khanna et al. 2003).
Taken together, these issues preclude any
simple policy from achieving first-best out-
comes, even when the inherent stochasticity
of nonpoint source pollution processes is
ignored or coped with by assuming known
distributions of stochastic components and
focusing on specified moments (e.g., mean) of
the pollution or economic damage outcomes.

We refer to the watershed-level pollution
process as a “water quality production func-
tion,” also sometimes referred to as a “fate
and transport” function (Shortle and Horan
2013). For our simple conceptual exposition,
we will assume that this function is differ-
entiable, although the state of practice in
environmental sciences is to employ bio-
physical simulation models to capture the

http://mda.maryland.gov/resource_conservation/counties/Read%20the%20Revised%20Regs.pdf
http://mda.maryland.gov/resource_conservation/counties/Read%20the%20Revised%20Regs.pdf
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key nonlinearities and interactions between
individual emissions as they contribute to
watershed-level indicators of water quality.7
Our results apply regardless of whether the
function can be written down in a compact
mathematical form or is represented by a
computer model.

With these three challenges in mind, we
propose and evaluate a range of simple and
practical policy approaches for regulating
emissions from nonpoint agricultural sources
that are focused on abatement actions at the
farm scale, and which utilize the full state-
of-the-art environmental process models. We
start by characterizing the first-best (cost-
efficient) solution and argue that first-best is
not possible due to the combination of the
nonlinear, nonseparable feature of realistic
water quality production functions and the
regulators’ incomplete cost information.
Next, we turn to second-best incentive-based
approaches that address both issues. Three
types of second-best policies are addressed.
First, a command and control (CAC) policy is
evaluated where regulators use their imper-
fect cost estimates for each abatement action
implemented in different locations in con-
junction with the realistic water quality pro-
duction function to assign practices. In this
case, the most accurate water quality produc-
tion function will be used, but, under imper-
fect cost information, inefficient allocations of
abatement actions to specific field locations
are likely. Second, a trading program is eval-
uated where the regulator develops a linear
and separable approximation to the complex
water quality production function, which is
then used to define trading ratios in a water
quality trading program. Since trading is
allowed, this approach overcomes the issue of
information asymmetry in costs of abatement
actions, but since trades will be based on the
linear approximation to the underlying pro-
duction function, the ambient water quality
target may not be met. The third approach is
a performance standard (PS) at the field scale
and is a mixture of the other two approaches.
As in the CAC case, the regulator identifies
the least cost solution using her (imperfect)

7 As Xepapadeas (2011) points out, “Another way [to regulate
NPS pollution] is to acquire information about individual emissions
and in this way to transform the NPS pollution problem into a PS
problem so that conventional environmental policy instruments
can be applied.”We follow this logic, and extend it to the context of
not only acquiring information about individual emissions based
on observable conservation actions but also to the context of
acquiring better information on the impact of individual emissions
on ambient pollution outcomes.

cost of abatement and the complex water
quality production function, and sets a field-
level standard at each location based on
the chosen abatement action. However, in
this case the farmer can choose a different
abatement action as long it achieves the same
edge-of-field emission reduction. In this way
the farmer can take advantage of cost differ-
ences that are known to be true, but that the
regulator is not aware of.

After fleshing out the properties of these
three policies, we evaluate them in a real
watershed context, where we anticipate the
potential tradeoff between cost-efficiency
and effectiveness of a program (where the
specified water quality target may not be
met due to the simplification of the complex
water quality production function).8 Using
simulation-optimization tools, which use the
unmodified water quality production func-
tion, we approximate the first-best solutions,
then provide an empirical assessment of (a)
inefficiencies in terms of pollution target
attainment due to approximations needed
to implement PS and trading, and (b) the
inefficiencies in terms of minimization of cost
in the presence of cost heterogeneity and cost
information asymmetry. We then present an
empirical correction that adjusts for ineffi-
ciency in the pollution process approximation
used for a trading approach, which appears
to be robust to the quality of regulators’ cost
information.

Conceptual Model

We now consider a simple model of pollu-
tion where water quality in a watershed is
impaired by runoff from agricultural fields
(e.g., nitrogen or phosphorus). There are
N farms in the watershed, and they are
heterogeneous with respect to physical char-
acteristics such as soil, slope, rainfall, etc. The
ambient water quality level is monitored in-
stream, at the outlet of the watershed. Let ri
be the ith farm’s actual reduction in pollution
(which could potentially be measured) at the
edge of the field (i.e., farm-level pollution
abatement): ri = ri(xi, γi, ξ) ∀i = 1, . . . , N ,
where xi represents the J × 1 vector of
abatement actions implemented by farm i,

8 Due to the inherently stochastic nature of weather, precipi-
tation, and other driving factors, abatement targets can only be
achieved in probabilistic terms (e.g., mean, or as a quantile). For
simplicity, we focus on the mean water quality indicators, but the
approach could be applied to any other summary statistic of the
distribution.
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γi represents the farm’s physical character-
istics, and ξ represents the random factor
related to the weather and/or other stochas-
tic influences.9 Abatement costs are defined
as the difference between baseline profits
and the profits associated with adopting a
conservation practice on a given field. We
assume that the costs of adoption vary across
locations due to both difference in physical
characteristics (soils, slope, etc.) and manage-
ment abilities. Farms are price takers in both
output and input markets. The baseline edge-
of-field emissions are the result of profit max-
imization behavior absent any regulations
regarding pollution or conservation practices.

The resulting ambient water quality is
given by an expected water quality produc-
tion function, W(r(x)), which is a function of
the vector of each farm’s individual edge-of-
field emission reductions, and the expectation
is taken with respect to the (assumed known)
distribution of ξ, that is, W(r) = EξW(r(ξ), ξ).
The ambient pollution level will depend on
the edge-of-field emissions, as well as the
location of those fields within the watershed.
The water quality production function reflects
the complexity of the hydrological and bio-
chemical processes that affect the fate and
transport of nutrients from the land to the
water. In practice, the true form of this func-
tion is not likely to be exactly known, though
the modeling science is rapidly improving
and there are a number of watershed-based
water quality models that accurately approx-
imate these hydrological and biophysical
processes, for example the Soil and Water
Assessment Tool (SWAT), and the Water
Erosion Prediction Project (WEPP) (Daniel
et al. 2011).

The ambient water quality at the watershed
outlet can be rewritten as W(r) = W0 − A(r),
where W0 is the expected level of water qual-
ity in the absence of regulation, and A(r)
is the expected ambient pollution reduc-
tion associated with r vector of emission
reductions—or more simply the abatement
function. Expected ambient water quality
associated with any given set of abatement
actions emission reductions can be expressed
as the difference between the expected
no-control (baseline) ambient water quality
level and the expected in-stream abatement.

9 We use the term “abatement action” broadly to refer to a
single conservation practice or to a combination of practices that
are simultaneously beneficial. We also include retiring land from
production in this set.

In the following subsections, we identify
the first-best (least-cost) solution to the prob-
lem of meeting an ambient water quality
target, and contrast it to the solutions that
are feasible under asymmetric information
on costs. We also consider when the relation-
ship between in-field conservation actions
and edge-of-field abatement is imperfectly
measured and the regulator instead relies on
edge-of-field models of pollution abate-
ment.10 Next we consider three policies,
command-and-control (CAC), an on-farm
performance standard (PS), and a watershed-
level trading program, each of which imply
different levels of farmer flexibility and levels
of information and optimization burdens for
the regulator. We consider the need for sim-
ple approximations to the pollution process
for incentive policy implementation and sub-
sequently evaluate the quality of needed app-
roximations empirically. We suggest the use
of a points-based system as a simple app-
roach for implementing both a performance
standard or trading program, and provide the
empirical assessment of the approach under
simulated cost information asymmetry.

First-best Scenario

Suppose we seek to achieve a particular
level of expected total ambient emissions
reduction, Ā, and the regulator knows the
form of edge-of-field abatement function
ri(xi) and the ambient abatement function
A(r(x)) (and, as we assume throughout, can
form an unbiased expectation with respect
to ξ).11,12 The cost minimization problem for

10 Examples exist where regulation is based on theoretical
models. According to Millock et al. (2002), the French Agence
de l’Eau imposes effluent charges based on model estimates.
However, firms can lower their effluent bill if they can install
monitoring equipment and show that their emissions are lower
than model estimates. In our case, if farmers wanted to do that they
could do so, and their monitored emissions would be multiplied by
the estimated delivery coefficient to convert emissions reductions
to points.

11 The distribution of ξ is assumed known for simplicity, and in
practice could perhaps be taken to be the historical distribution
of stochastic weather. However, ongoing climate change intro-
duces an additional uncertainty over the form of the distribution
itself. Practical solutions may include using climate-model derived
distributions, with the possibility of using model ensembles to
address model uncertainty. Interestingly, the same considerations
apply to A(r) function itself, meaning that the issue of model
uncertainty and performance looms in the background, and water
quality estimates could also be formed using model ensembles.
We do not take up these potentially important practical consid-
erations in this work. The issues of cost information asymmetry
or the fact that practical incentive-based policies would likely
require a simplification of modeled outcomes to be promulgated
to the farmers still seem to apply.

12 The assumption that we know the form of ri(xi) is not
identical to the assumption that the regulator is able to monitor
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a regulator seeking to minimize the over-
all abatement costs and meet the ambient
emission reduction can be written as:13

(1) min
xi

�iCi(xi) s.t. A(r(x)) ≥ Ā.

Assume for the sake of demonstration that
A(r(x)) is twice differentiable (although in
the empirical work A(r(x)) will be repre-
sented by a process model), and that it is
nonlinear and nonseparable:

(2)
∂A(r(x))

∂xij
= ∂A(r−i(x); ri(x))

∂ri

∂ri(xi)

∂xij

where the r−i(x) notation refers to the poten-
tial importance of abatement actions on
farms other than i, as argued for in Braden
et al. (1989), Lintner and Weersink (1999),
Randhir et al. (2000), and Khanna et al.
(2003). Nonseparability refers to the depen-
dence of the marginal impact of conservation
action on other conservation actions (e.g.,
on other farms in the flowpath of nutrients).
Randhir et al. (2000) provide a visual illus-
tration of nonseparability of actions in a
watershed, while nonlinearity refers to the
marginal impact being nonconstant in xij

(Shortle and Horan 2013).14 The solution
vector x∗ specifies the least-cost abatement
action for each field. Clearly, under non-
separability and nonlinearity, each element
of the optimal solution vector depends on
optimal abatement actions on other farms
via the optimality conditions for solving
equation (1):

∂Ci
(
x∗

i

)

∂xij
− λ∗ ∂A (r−i (x∗) ; ri (x∗))

∂ri
(3)

∂ri
(
x∗

i

)

∂xij
≥ 0

edge-of-field emissions. We assume that only ambient (watershed
outlet) water quality is monitored. Should monitoring at the edge-
of-field become more common, better farm-level approximations
could be provided to farmers, who need to quickly compute the
impact of their (counterfactual) actions, and farmers are unlikely
to be equipped to run edge-of-field simulation models.

13 Shortle and Horan (2013) identify the conditions under
which the cost-efficient solution would be second-best on the
grounds of full economic efficiency, when damages are monetized.
While their argument is likely to apply, we point out that even
this (potentially second-best) target may be difficult to achieve.

14 As a simple example, f (x, y) = xy is nonseparable in the
sense that fx = y, but linear in x because fxx = 0.

and the associated complementary slackness
conditions.15

If the regulator has perfect information
on costs of abatement actions, the technical
ability to solve equation (1), and the prop-
erty rights assignment allowed for direct
regulation, then a CAC policy directing
farmers to implement x∗ would achieve the
first-best solution. Obviously, we do not
expect this to be the case. Alternatively, if
the regulator does not know the abatement
costs at individual farms, but the ambient
water quality function is linear and sep-
arable, then incentive-based polices can
overcome this information asymmetry, effec-
tively putting the optimization burden on
private actors to achieve a first-best solution.
To be precise, when the expected pollution
abatement is linear and separable both at
the edge of field and at the watershed outlet,
A(r(x)) = ∑N

i diri(xi) = ∑N
i

∑J
j=1 diwijxij, a

trading program in expected edge-of-field
emissions reductions ri(xi) = ∑J

j=1 wijxij using
the ratios of “delivery coefficients” di as the
trading ratio will achieve a first-best solu-
tion, as demonstrated in Montgomery (1972).
This is familiar theoretical territory, and was
recently reviewed, for example, by Olmstead
(2010).16

However, if the water quality production
function is not linear and separable and the
costs of abatement actions at the individual
field scale are not known to the regulator,
it will not be possible to achieve a first-best
solution using standard policy tools. We thus
turn to second-best options.

Second-best Approaches

In considering the second best approaches,
we assume that while the regulator does not
know the true costs of abatement actions
at the field scale, he does have an accurate
mean estimate of the cost of adopting each
abatement action averaged across farm types
and locations within the watershed. Data of
this sort is available and routinely used in a
variety of conservation program cost share

15 For ease of exposition, we omit the farm-level constraints for
each abatement action (0 ≤ xij ≤ FarmSize), but those constraints
are imposed in the empirical part of the article.

16 In practice, of course, the presence of multiple trading ratios
may hinder the program performance by introducing additional
complexity in farmers’ decision-making. We acknowledge that
these issues are likely to apply, but we wish to focus on the
scenario where private trading outcomes match the theoretically
predicted ones.
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programs, so it seems a reasonable assump-
tion. Further, we assume that the regulator
has access to a relatively accurate watershed
model that represents the complex fate and
transport properties of the watershed for
the pollutants of interest.17 An important
second-best question arises: What are the
consequences of using a linear approximation
to nonlinear and nonseparable A(r(x)) when
watershed trading or edge-of-field trading
(performance standard) is allowed? The con-
sequence can only be in terms of abatement
ex post because once a Montgomery-type
trading linear trading system is implemented,
whatever abatement level is achieved is
theoretically expected to be cost-efficient.
The performance of the second-best trading
approach will then depend on the quality of
linear approximation.18

CAC Approach

A CAC approach involves direct prescription
of the vector of abatement actions across
farms. If the regulator has no information
on the cost of abatement actions, the best he
can do is to employ a satisficing approach:
that is, to prescribe {xSat

CAC | A(r(xSat
CAC)) = Ā}.

Here, the vector of abatement actions chosen
might simply be to require that all fields in all
locations adopt the same conservation prac-
tice (or bundle) that achieves the ambient
target. This corresponds to a very simplis-
tic form of CAC and is unlikely to be even
approximately cost-effective.

However, the environmental agency is
likely to have some limited information on

17 The water quality production function will in reality have
approximation errors relating to calibration, parameter uncer-
tainty, etc. While important, these errors are beyond the scope of
our work. Issues of nonseparability and nonlinearity also arise in,
for example, conservation biology (where spatial configuration
of protected areas determines the conservation benefit). Framing
the problem in terms of a spatial externality (which may be a
productive way to think about the nonseparability issue), authors
like Parkhurst and Shogren (2007) have proposed incentive-based
policies that attempt to approximate the desirable spatial out-
come (contiguous protection). The standing challenge in that
area as well is to provide workable incentive-based policies that
could produce desirable environmental outcomes under asym-
metric information and nonseparability of individual conservation
actions.

18 An underlying question for second-best policy is thus:What is
more important to account for: accurately modeling the complex
consequences of abatement actions or cost heterogeneity? In an
application to groundwater extraction, Kuwayama and Brozovic
(2013) find (under a linearly additive abatement function) that
ignoring abatement action complexity may generate most of the
cost savings for low abatement targets, but that accounting for
spatial heterogeneity in the effect of abatement actions becomes
more important as abatement goals are increased.

the distribution of costs. Assume, for exam-
ple, that the agency knows the vector of
average costs, θ, but not the cost at each indi-
vidual location. A second CAC approach,
which we call optimizing CAC, involves the
use of this information to solve:

(4) min
xi

�iCi(xi, θ) s.t. A(r(x)) ≥ A

where θ represents a vector of the regula-
tor’s best estimates of costs. The solution
to this problem will generally differ from
that obtained in solving equation (1), and
the assignment of abatement practices,
xOpt

CAC(θ), will not necessarily coincide with
the least-cost solution, x∗(θ), where we make
explicit its dependence on the NJ × 1 vector
of true costs, θ. In general, we expect this
approach to perform better as the quality of
the regulator’s cost information improves.

Performance Standard

Using PS, the regulator allows the farmer
to choose the lowest-cost combination of
abatement to satisfy the imposed perfor-
mance standard. The on-farm performance
standard is chosen by the regulator under
the best possible accounting for complexity
in the form of A(r), and the set of perfor-
mance requirements r̂ could satisfy A(r̂) = Ā
exactly. Again, the performance standard
vector could be selected without any cost
information under a satisficing approach:
A(r̂Sat

PS ) = Ā, or the regulator could rely on
her best set of cost estimates θ to obtain an
optimizing set of performance requirements
{r̂Opt

PS (θ) | A(r̂Opt
PS (θ)) = Ā}. Since farmers know

their true costs, they may be able to meet
the performance standard allocated to them
less expensively. If faced with a performance
standard (either of satisficing or optimizing
form), farmers could solve the following
optimization problem:

(5) min
xi

Ci(xi, θi) s.t. ri(xi) ≥ r̂i(θ)

where they use their true vector of conserva-
tion practice costs, θi, to solve the problem.
Note that if the PS policy took this form,
the farmers could either be using the true
monitored edge-of-field reductions or the
“true” (best available) ri(xi) function (model)
used by the regulator. In these circumstances,
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the water quality goal would be met exactly.
However, as monitoring is costly and all
farmers likely lack the capacity to run the
edge-of-field models embodied by ri(xi), a
simplification of ri(xi) could greatly reduce
the burden placed on farmers. Specifically,
we can approximate ri(xi) ∼= ∑J

j=1 wijxij. In
this case, farmers solving equation (5) would
result in a solution vector, xk

PS(w), which
could fail to meet the water quality goal
due to the approximation error associated
with using linear weights, w.19 The sign of
edge-of-field approximation error depends
on whether ri(xi) is convex (underesti-
mates abatement effectiveness) or concave
(overestimates abatement effectiveness)
in xi.20

In terms of cost-efficiency, to the extent
that a regulator’s cost information is able
to capture cost heterogeneity across abate-
ment actions and locations, we expect that
an optimizing PS policy, resulting in xOpt

PS (w),
will be more cost-efficient than a satisficing
PS policy, resulting in xSat

PS (w). However, to
the extent that the satisficing approach might
result in the selection of higher-cost abate-
ment actions, and if cost and effectiveness of
abatement actions are positively correlated,
we may expect that, for an ex ante situation
given Ā, A(xSat

PS (w)) ≥A(xOpt
PS (w)).

Trading under Nonseparability and
Nonlinearity of Individual Abatement Actions

The alternative that in principle can lead to
cost-efficiency without a need for any cost
information by the regulator is trading in
water quality improvement credits, which
relies on private optimizing behavior to min-
imize the cost. At the crux of the market
design is the ability to set the right (explicit
or implicit) trading ratio and to provide an
ambient pollution constraint that ensures the

19 The definition of xi can include all feasible interactions
of “atomic” abatement actions feasible at the field scale. For
k atomic abatement actions for example, Conservation Tillage,
Grassed Waterways, Nutrient management, xi could be defined as
the feasible subset of all the abatement action combinations (power
set with 2k elements), and the resulting linearization in xi can
capture more of the potential nonlinearity and interdependence
than a linearization utilizing k individual abatement actions.

20 Consider a 2nd-order Taylor series expansion of the edge-
of-field abatement function around baseline abatement: ri(xi) ∼=
ri(x0

i ) + ∇rxi + x′
i∇2

r xi = 0 + wixi + x′
i∇2

r xi , which implies that
ri(xi) < (>)wixi if ri(xi) is concave (convex). We are mostly
interested in the resulting ambient approximation A(wx), which
depends on the performance of all field-level approximations and
their interactions, specified by A(·).

attainment of the water quality goal. In the
case of the linear and separable water quality
production function, Montgomery (1972)
demonstrated that it is straightforward: farms
trade according to the ratio of the delivery
coefficients and the pre- and post-trading
outcome has to satisfy the ambient pollution
constraint.21

However, under a nonlinear and nonsep-
arable water quality production function,
the ability to set the right trading ratio and
the effective trading system cap (constraint)
is not assured. To demonstrate, the second-
order Taylor series expansion around some
initial vector of on-farm pollution reductions
(e.g., baseline) can be written as:

A(r) ∼= A(r0) + ∇A(r0)r + r′∇2
A(r0)r

= 0 + dA(r0)r + r′∇2
A(r0)r.(6)

In this case, the vector of marginal impacts
of edge-of-field abatement on ambient water
quality, dA(r0), can potentially serve as the
vector of delivery coefficients and provide
the basis for forming the trading ratios, but
two things need to be observed. First, under
nonseparability, the “delivery coefficient”
vector is a function of the abatement activ-
ities of other farms (equation 2), and if a
trading system is to be set up, some initial
vector of abatement actions needs to be
used. The approximation presented above
may be quite accurate in the vicinity of
the initial abatement action vector (that is,
around the baseline), but may be quite poor
at the post-trading vector of on-farm abate-
ments. Second, under nonlinearity, the linear
approximation will under- (over)estimate
ambient abatement if the water quality
production function is convex (concave) in
abatement. This may lead to non-attainment
(even on average) of the water quality goal,
and may require the linearization based
on fixed-delivery coefficients, dA(r0)r, to be
empirically adjusted upward or downward
for the convex and concave A(r), respectively.
This adjustment leads to a tighter cap on
emissions (a larger abatement credit target)
for the concave function, with a less stringent
cap (a smaller abatement credit target) in the

21 However, in some cases optimal trading ratios (trading
policy parameters) have been shown to be a function of a
regulator’s information on abatement costs (Rabotyagov and
Feng 2010; Yates and Rigby (2012); http://www.webmeets.com/
AERE/2012/prog/viewpaper.asp?pid=99).

http://www.webmeets.com/AERE/2012/prog/viewpaper.asp?pid=99
http://www.webmeets.com/AERE/2012/prog/viewpaper.asp?pid=99
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convex case. The direction and magnitude of
this adjustment is an empirical question to
which we subsequently return.

The appeal of trading in terms of its ability
to achieve cost-efficiency without imposing
information collection and optimization bur-
dens on the regulator leads us to consider
and evaluate a Montgomery-type trading
program where we sacrifice the ability of
state-of-the-art A(·) to capture nonlinearities
and nonseparabilities and rely on a poten-
tially imperfect linear approximation. That
is, we add another layer of linearization to
the PS policy by imposing fixed and con-
stant delivery coefficients for the ambient
impact of edge-of-field abatement (on top of
the edge-of-field linearization employed in
implementing a PS policy):

(7) A(r(x)) ∼=
N∑

i

diri(xi) =
N∑

i

J∑

j=1

diwijxij.

Policy Design Using an Approximation to the
Water Quality Production Function

Suppose the regulator utilizes a single linear
approximation of the effect of abatement
actions on both the edge-of-field and ambient
water quality:

(8) A(r(x)) �
N∑

i

J∑

j=1

diwijxij =
N∑

i

J∑

j=1

aijxij

where edge-of-field reductions are given
by ri(xi) ≡ ∑J

j=1 wjxij, and a farmer under-
taking an abatement action earns a credit
of

∑J
j=1 aijxij, where aij provides the weight

given to a conservation practice j at farm i.
We refer to aij as a “points coefficient” and
refer to the credits earned by farmer and the
constraints imposed under PS or the trad-
ing programs in point totals.22 Under the
adopted approximation, the points coefficient
can be interpreted simply as the approx-
imate marginal benefit, in terms of water
quality abatement, of practice j at location i.
In the empirical section below, we describe
an approach for estimating the vector of
multiple aij for our study watershed.

22 The “points” terminology is not crucial, but the terminology
is chosen to be consistent with Kling’s (2011) proposal, as well
as some existing water quality crediting programs (e.g., Florida
Everglades) and other environmental benefit scoring systems such
as the Conservation Reserve Program’s Environmental Benefits
Index.

The CAC policy does not require the use
of points, as each farmer is assumed to be
directly required to undertake abatement
actions. For the PS policy, the regulator needs
to choose the appropriate farm-level point
requirements. Under this approach, a farmer
is free to choose the conservation practices
that solve the cost-minimization problem:

(9) min
xij

CP
i (xij, θi) s.t.

J∑

j=1

aijxij ≥ bo
i

where the performance requirement is spec-
ified by bo

i . The performance requirements
differ under satisficing and optimizing PS
approaches.

Under the trading approach, credits
(points) generated by abatement actions
are tradeable, on a one-to-one basis, across
the watershed. As a result, a farmer solves:

min
xij ,bi

CP
i (xij, θi) + pbi(10)

s.t.
J∑

j=1

aijxij + bi ≥ bo
i

and the point price is determined in a points
market equilibrium, where

∑
i bi = 0. The

overall cap is specified by
∑

i b0
i . Concep-

tually, the proposed trading approach is a
combination of an emission permit system
where rights are defined in terms of what
firms can emit, and an ambient permit sys-
tem where rights are defined in terms of
pollution contributions to a receptor point
(Montgomery 1972; Baumol and Oates 1988).
As in an emission permit system, firm permit
(points) requirements are specified at the
firm level and not at the level of the pollution
receptor, and trades in points can occur on
a one-to-one basis across the entire water-
shed. Similar to an ambient permit system,
the point values approximate the impact of
abatement actions at the (single) pollution
receptor (watershed outlet). Trading ratios
among abatement actions and across the
watershed are specified implicitly by the pro-
mulgated point values (an effective trading
ratio between action j in location i, and an
action k in location l is given by tij,kl = akl

aij
).23

23 As a point of conjecture, the fact that farmers would simply
see how many points accrue per acre for a particular abatement
action, and would participate in a market for a single commodity
(“point”) traded on one-to-one basis, may serve to simplify market
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A substantial amount of literature exists
related to choosing the correct trading ratio
between point and nonpoint sources when
the regulator treats point source and non-
point source abatement as different in risk
(e.g., Horan, Shortle, and Abler 2002; Hung
and Shaw 2005). Conceptually, the point val-
ues assigned to nonpoint sources could be
adjusted in a similar fashion.

Empirical Application

Study Area: Boone Watershed River

Boone Watershed River is located in the
north-central part of Iowa, and covers more
than 237,000 acres (960 km2) in six counties.
Land use in the watershed is dominated by
agriculture, with nearly 90% of the area cov-
ered by row crops, and another 6% retired
from crop production. The data for popu-
lating the watershed-based model (Soil and
Water Assessment Tool, SWAT) was col-
lected at the scale of a “Common Land Unit
(CLU)” level, which can best be thought
of as an agricultural field; there are more
than 16,300 CLUs in the Boone sample.
Data concerning crop rotations, tillage, and
conservation practices were provided by
a field level survey conducted by Kiepe
(2005).24 Weather, soils, management, and
the approach for simulating the water quality
impact of conservation practices are detailed
in Gassman (2008).

Conservation Practices, Costs, and the Water
Quality Production Function

The set of conservation practices selected
includes nutrient management (reducing
the rate of fertilizer application), conserva-
tion tillage (no till), cover crops, and land
retirement. The above set is expanded
into a set of mutually exclusive abatement
actions (i.e., the combination of no till and
cover crops is considered an independent
abatement action). The baseline is also con-
sidered as a choice alternative, which allows
us to consider the cases where keeping the
baseline is optimal.

participation and price discovery. Market complexity has been
identified as one of the obstacles to a robust water quality trading
market (e.g., Shortle 2013).

24 Mr. Charles Kiepe, a private consultant from Hamilton, Iowa,
conducted the watershed survey and recorded the land use, crop
rotation, tillage practice, and other conservation actions at the
field level. Details are provided in Gassman (2008).

Costs for each conservation practice
were drawn from several sources, and are
expressed as dollars per acre. The cost of
adopting no till (drawn from Kling et al.
2005) is $9.62 per acre if the baseline has
assigned conventional tillage, and $4.81 if the
baseline is assigned mulch tillage. Cover crop
cost estimates averaged $25 per acre.25

An implied yield curve for corn-soybean
rotation, where yield is estimated as a func-
tion of fertilizer applied, was used to derive
the cost for reducing the fertilizer application
rate (Rabotyagov 2007). The cost of reducing
fertilization is given by multiplying a 20%
reduction in the baseline fertilizer rate by
the price of corn, and by subtracting the cost
savings from applying less fertilizer.26

The cash rental rates (Edwards and Smith
2009) in conjunction with the available corn
suitability ratings were used to compute the
cost of land retirement. The cost of abate-
ment actions consisting of a combination
of the primary conservation practices (i.e.,
no-till and reduced fertilizer) are obtained
by summing per acre cost of each conserva-
tion practice considered in the combination.
Table 1 summarizes the costs used in this
application.

The Soil and Water Assessment Tool
(SWAT) is a water quality, watershed-based
hydrological model developed by the U.S.
Department of Agriculture to simulate the
impact of point and nonpoint source emis-
sions (Arnold et al. 1998; Arnold and Fohrer
2005; and Gassman et al. 2008). The model
is used to estimate the changes in nutrient
loadings as a response to alternative conser-
vation practices under different crop choices
and rotation alternatives. In order to run
simulations, the watershed, a well-defined
geographical entity, is divided into several
sub-watersheds or sub-basins.

The Characterization of the First-best Solution

To evaluate the performance of our three
second-best regulatory approaches, we first

25 Provided by T. Kaspar personal communication.
26 An extensive body of literature on how farmers might value

fertilizer reductions under uncertainty exists (e.g., Lichtenberg
2002). The policy-relevant implication is that the cost of fertilizer
reductions is private information in general. An issue of hidden
action is also present in the case of fertilizer applications, and the
programs we propose can easily be formulated only for directly
observable abatement actions. In practical terms,however,nutrient
management is very likely to be considered as a part of any NPS
water quality policy.
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Table 1. Mutually Exclusive Abatement Actions and Costs

Conservation Assumed Cost Used in
Practice Conservation Practice Description Application, Mean $/acre

1 Baseline Baseline agricultural practices 0.0
2 No till (NT) No till, no more than 30% of crop

residue is removed.
4.9

3 Reduced Fertilizer (RF) Reducing fertilizer application rate
by 20%.

7.4

4 Cover Crops (CCr) Establishment of cover crops
between crop rotations.

24.9

5 Land retirement Retirement of land from
production.

206.5

6 NT RF No till and 20% reduction in
nitrogen application rate.

12.3

7 NT CCr No till and establishment of cover
crops.

29.8

8 RF CCr 20% reduction in nitrogen
application rate, establishment of
cover crops.

32.32

9 NT RF CCr No till, 20% reduction in N
application rate and cover crops.

37.22

solve for the first-best solutions: the least-
cost placement of conservation practices
across the watershed to achieve any given
level of ambient water quality. Evaluating
efficient pollution control strategies requires
either building a mathematical program—and
essentially building a model of the pollution
process—or using optimization approaches
that incorporate the biophysical model in its
entirety (simulation-optimization approach).
In the former approach, the solution tech-
niques included dynamic programming
(Braden et al. 1989; Randhir et al. 2000) and
mixed integer programming (Khanna et al.
2003). Evolutionary algorithms (Arabi et al.
2006; Rabotyagov et al. 2010) have been used
in the simulation-optimization approach.

Hydrologic models such as SWAT, cal-
ibrated with watershed-specific data, can
be used to determine the expected level of
ambient water quality that can be achieved
by a given placement of conservation prac-
tices in a watershed. However, solving for
the least-cost approach to achieving a given
water quality level is nontrivial; a watershed
is divided into hundreds of fields, and each
field may have multiple agricultural practices
that are suitable for its type of soils. In our
example, for a set of 9 abatement actions
and 2,968 fields, there are a total of 92,968

possible watershed scenarios. Even with fast
computing, evaluating all possible combi-
nations and selecting the lowest cost is not
possible. However, using an evolutionary

algorithm provides one way to deal with
the combinatorial nature of the watershed
simulation-optimization model to solve for
least-cost solutions. Evolutionary or genetic
algorithms (EA) are designed to mimic
biological evolution (Deb 2001). Genetic
algorithms are heuristic global search algo-
rithms that are able to find the nearly optimal
solution by using principles like “natural
selection” and “survival of the fittest.” These
computer-intensive methods address the
combinatorial nature of the problem by
intelligently covering the search space.

We use a simulation optimization sys-
tem using SWAT and a modification of the
Strength Pareto Evolutionary Algorithm 2
presented by Zitzler, Laumanns, and Thiele
(2002), and described in Rabotyagov et al.
(2010) to approximate the solution to a
two-objective minimization problem that
simultaneously minimizes the 5-year mean
annual nitrogen loadings and the costs of
abatement practices for the examined water-
shed.27 The solution to this multiple objective
problem is a set of Pareto-nondominated
points in the objective space, where each
point on the frontier, called an individual, is a
specific watershed configuration that achieves
a particular level of nitrogen loadings in the

27 The simulation period used in optimization is 1997–2001. We
later present the results on the potential variability of solutions
across a longer time frame (1990–2009).
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least-cost way. The generated Pareto frontier
can be interpreted as the set of approximate
first-best solutions—the least cost watershed
configurations to achieve any given ambient
water quality.28

Obtaining the Point Coefficients

To implement the proposed PS or trading
program, a linear approximation to the water
quality production function and the edge-of-
field abatement effectiveness is needed. The
nonlinear water quality production function
is thus:

A(x) �
N∑

i

J∑

j=1

diwijxij =
N∑

i

J∑

j=1

aijxij(11)

= xa

where x is the vector of specific abatement
actions, and a is the vector of point coeffi-
cients. We construct point coefficients at the
level of a sub-basin (but we note that differ-
ent point values for conservation practices
for every farm could be computed following
the same steps). There are 30 sub-basins in
the watershed, (N = 30), and 9 abatement
actions are considered (J = 9, table 1). Thus,
we need to estimate 270 × 1 the vector of a.
To do so, we generate 3,000 random alloca-
tions of abatement actions to the fields in the
watershed, and simulate the water quality
impacts using SWAT. The resulting 3,000
simulated abatement outcomes, denoted
by As, are combined with the 3,000 × 270
matrix of abatement action assignments,
denoted by xs, to generate a data set that
is in turn used to estimate the points coef-
ficient vector a by ordinary least squares:
mina(As − xsa)′(As − xsa). Table 3 presents
estimation results.29

In general, the results are quite sensible
and conform closely to prior expectations.

28 Supplementary appendix material describes the optimiza-
tion parameters. Deb (2001) provides a general background on
evolutionary algorithms, and Rabotyagov et al. (2010) and Nick-
low et al. (2010) discuss some recent applications for watershed
optimization.

29 Feng, Jha, and Gassman (2009) use SWAT to estimate
delivery ratios by changing N application rates in each sub-
basin of a watershed, holding rates constant in other sub-basins,
obtaining the implied “delivery ratio,” and solving for the least-
cost allocation of N abatement across sub-basins. As discussed
above, such an approach imposes the linear structure on the
water quality production function, and estimated delivery ratios
provide a coarse approximation to the modeling capability of
SWAT.

Practices that are known to be highly effec-
tive at reducing nitrogen loss are awarded
higher points than less effective practices.30

A somewhat unexpected result is that nitro-
gen fertilizer reductions alone are not always
significant, but they are significant when
combined with no-till (and no-till with cover
crops), and are significant in all but one (sub-
basin 27) when combined with cover crops.
Consistent with the presence of nonlinear-
ities, the points associated with adopting
several conservation practices are not sim-
ply the sum of the points for each practice
separately. In 22 out of 30 sub-basins, a
farmer receives less than an additive credit
for adopting no-till and cover crops jointly,
while in the remaining sub-basins, a farmer
is awarded additional points for joint adop-
tion. Unless the farmers face substantial cost
reductions for adopting multiple conserva-
tion practices on the same field, this reward
system is likely to lead to single-practice
adoption in sub-basins with sub-additive
point credits. In terms of practical imple-
mentation, farmers in different sub-basins
need only to be provided with one row of
table 2, which specifies the credits earned
from adopting a practice. Thus, the cognitive
burden on the participants is likely to be low.

Once the regulatory agency has assigned
point values to a particular abatement action
in a specific sub-basin, the total points asso-
ciated with any watershed configuration can
be computed. For both the performance stan-
dard and the tradable credit programs, the
total points value chosen by the regulator
will have a direct impact on the watershed
abatement levels achieved.

Having obtained a set of points, we
are now in the position to demonstrate
the performance of all three regulatory
approaches under different assumptions
of how the regulator formulates the policy.
The benchmark for comparison is given by
the approximate Pareto frontier in nitrogen
abatement-cost space (watershed-level total
cost of abatement curve), obtained using the
simulation-optimization approach described
above (figure 2).

30 Table S.3 in the supplementary appendix summarizes the
effectiveness of each abatement action for N reduction under a
uniform application (i.e., the same abatement action is assigned
to each field in the watershed). The point value estimates are
qualitatively similar.
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Table 2. Estimated Point Values Coefficients by Sub-basin (expressed as approximate
expected annual kg N reduction from 1 acre of abatement action treatment)

Abatement Actions (practice combinations)

No Till, Red. Fert., Red. Fert.,
Cover Cover Red. Red. Fert., Cover No Till, Land

No Till Crops Crops Fertilizer No Till Crops Cover Crops Retirement

Subbasin1 3.4∗ 1.9∗ 5.4∗ 0.2 4.5∗ 2.7∗ 6.2∗ 10.3∗
Subbasin2 4.0∗ 2.4∗ 5.3∗ 0.7 4.5∗ 2.5∗ 5.9∗ 9.6∗
Subbasin3 3.5∗ 1.9∗ 4.6∗ 0.3 3.9∗ 2.6∗ 4.8∗ 7.5∗
Subbasin4 2.5∗∗ 2.8∗∗ 4.5∗ 0.3 3.8∗ 2.1∗∗ 4.2∗ 5.8∗
Subbasin5 2.0∗ 2.0∗ 4.0∗ 0.6∗∗ 2.6∗ 2.5∗ 4.7∗ 6.4∗
Subbasin6 2.2∗ 2.2∗ 4.4∗ 0.7∗∗ 2.4∗ 2.9∗ 5.0∗ 7.0∗
Subbasin7 6.3∗ 3.3∗∗ 6.5∗ 1.3 6.6∗ 3.3∗∗ 7.8∗ 10.1∗
Subbasin8 2.8∗ 3.1∗ 5.2∗ 0.8 3.9∗ 3.2∗ 5.2∗ 7.5∗
Subbasin9 0.9∗∗ 1.0∗ 2.0∗ 0.3 1.1∗ 1.8∗ 2.3∗ 4.3∗
Subbasin10 1.7∗ 2.3∗ 3∗ 0.5 2.2∗ 2.7∗ 4.5∗ 5.9∗
Subbasin11 2.1∗ 1.8∗ 3.4∗ 0.1 3.2∗ 2.8∗ 5.3∗ 7.3∗
Subbasin12 2.9∗ 2.3∗ 4∗ 0.0 3.2∗ 3.0∗ 5.1∗ 7.0∗
Subbasin13 2.2∗ 2.5∗ 3.5∗ 0.3 2.3∗ 2.5∗ 3.4∗ 5.8∗
Subbasin14 2.0∗ 2.0∗ 3.2∗ 1.0∗∗ 2.5∗ 3.2∗ 4.0∗ 5.7∗
Subbasin15 2.4∗ 1.7∗ 4.0∗ 0.1 2.7∗ 1.7∗ 3.8∗ 5.1∗
Subbasin16 1.1∗∗ 1.1∗ 2.5∗ 0.2 1.6∗ 1.5∗ 2.8∗ 3.9∗
Subbasin17 1.8∗ 1.9∗ 3.2∗ 1.0∗∗ 2.1∗ 2.5∗ 3.6∗ 4.4∗
Subbasin18 2.9∗ 3.1∗ 4.1∗ 1.5∗∗ 3.4∗ 3.4∗ 4.8∗ 7.1∗
Subbasin19 3.4∗ 2.0∗∗ 4.8∗ 0.0 3.0∗ 2.8∗ 4.8∗ 7.5∗
Subbasin20 1.9∗ 2.6∗ 4.3∗ 0.9∗∗ 2.7∗ 2.5∗ 4.5∗ 6.6∗
Subbasin21 4.1∗ 2.8∗ 6.7∗ 0.9∗∗ 4.9∗ 3.6∗ 7.0∗ 12.2∗
Subbasin22 2.3∗ 3.1∗ 4.4∗ 0.6 3.7∗ 3.5∗ 5.4∗ 8.5∗
Subbasin23 2.6∗ 3.1∗ 4.4∗ 0.4 3.6∗ 3.5∗ 5.8∗ 7.9∗
Subbasin24 2.2∗ 2.1∗ 4.4∗ 0.8∗∗∗ 3.5∗ 3.1∗ 4.7∗ 7.8∗
Subbasin25 1.5∗∗ 1.7∗∗ 4.5∗ 0.2 2.5∗ 1.9∗∗ 4.2∗ 6.7∗
Subbasin26 3.3∗ 3.7∗ 8.1∗ 0.7 5.6∗ 4.8∗ 7.3∗ 12.7∗
Subbasin27 5.5∗∗ 5.1∗∗ 9.2∗ 1.5 3.9∗∗∗ 3.2 9.1∗ 12.2∗
Subbasin28 2.0∗ 2.1∗ 4.4∗ 0.0 2.6∗ 1.9∗ 3.9∗ 5.5∗
Subbasin29 3.5∗ 2.7∗ 4.5∗ 0.5 3.7∗ 4.1∗ 5.2∗ 9.3∗
Subbasin30 3.8∗ 2.2∗ 5.4∗ 1.2∗∗ 3.6∗ 3.4∗ 5.5∗ 8.3∗

Note: Asterisk (∗), double asterisk (∗∗), and triple asterisk (∗∗∗) denote significance at the 1%, 5%, and 10% levels, respectively. R2 = 0.993.
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Figure 2. Total abatement cost curve
(tradeoff frontier)

Setting the Points Targets under the Three
Approaches

The final step in implementing one of the
three policies described is to set the relevant

on-farm target. In the case of CAC, this is
the required conservation practice for each
field; for the PS, the target is the number of
points each farm is required to accrue and
the watershed-level points total is the target
for the trading policy. As discussed above,
the regulator has an option to use either a
satisficing or optimizing approach. Imple-
menting CAC involves requiring xsat

CAC for the
satisficing case and xopt

CAC(θ) for the optimizing
case.

It is also straightforward to compute
the number of points (a linear approx-
imation to watershed-level abatement)
that these two solutions represent. The
points associated with an individual per-
formance standard can be constructed as
bos

i = ∑J
j=1 aijxsat

ij for the satisficing case, and

as boo
i = ∑J

j=1 aijx
opt
ij for the optimizing case,
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where the xij terms represent the correspond-
ing element of xsat

CAC or xopt
CAC(θ), respectively,

for each farm. Similarly, the total points
for the watershed for the satisficing and
optimizing target can be written, respec-
tively, as Psat = ∑

i bos
i = ∑

i

∑
j aijxsat

ij , and

Popt = ∑
i boo

i = ∑
i

∑
j aijx

opt
ij . Total points

can be translated into an initial farm-level
allocation of points requirements in any num-
ber of ways. One approach is for the initial
allocation of points to equal the requirements
imposed under the on-farm performance
standard. Another approach is to equally
divide the total watershed points equally
amongst all farms. Obviously, numerous
other initial allocations are possible.

Policy Simulations

The performance of the three policies and the
two approaches to define points targets (sat-
isficing vs. optimizing) results in six different
policies to simulate. Results are summa-
rized in table 3 for three levels of desired
water quality improvements: 20%, 30%, and
40% reductions in mean annual loadings of
nitrogen (N). In this first set of simulations,
we assume that the costs of conservation
practices are known to both the farmer and
the regulator. Under the CAC approaches,
abatement actions are mandated, so non-
attainment of the expected water quality
goal is precluded. However, under the PS
and the trading approaches, only point totals
(for the farm and the watershed, respec-
tively) are mandated.31 Since the points are
approximations to the effectiveness and fate-
and-transport of nutrients, the reallocation
of points resulting from optimization (on the
level of the farm for PS, and on the water-
shed level for trading) can potentially result
in nonattainment of the abatement goal. In
other words, for this case, when costs are
assumed to be known, the PS and the simu-
lated trading outcomes serve as (hopefully
good) approximations for the first-best solu-
tion (represented by CAC-optimizing in this
case) in terms of water quality goal attain-
ment. The reported N reductions in table 3
indicate that the point allocation in the PS-
satisficing and PS-optimizing cases lead to a

31 Note that the outcomes are not identical because the abate-
ment action allocations used to construct the trading programs
under the satisficing and the optimizing approaches involve some-
what different total point values (table 4). Under the same total
point values, the simulated outcomes are identical.

slight over-achievement of abatement goals
for the ranges specified.32

In contrast, a clear pattern of non-
attainment is found under the trading
approaches, regardless of whether total
watershed point targets are specified using
the satisficing or the optimizing approaches.
Although we do not use a differentiable
abatement function, this is consistent with
concavity of A(·) in edge-of-field abatement
(equation 6). However, the magnitude of
non-attainment is fairly small (never exceed-
ing 4 percentage points of abatement). In
this case, the total point requirement at the
watershed level may require an upward
correction.

We now turn to the cost-effectiveness of
the approaches. We expect that the least-
flexible CAC approach will perform least
favorably on this criterion. We also expect
the more flexible approaches to become
progressively closer to the efficient frontier
as the degree of cost-minimizing flexibility
afforded to program participants increases;
this is exactly the pattern we observe. The
outcomes of the CAC-satisficing approach
are extremely inefficient, with costs of meet-
ing the three target N reductions ranging
from 3 to 6 times higher than the first-best
solutions. The cost effectiveness of the perfor-
mance standards is better than CAC, with the
PS optimizing approach doing much better
than PS satisficing. The trading outcomes
are quite cost-effective. Although a direct
comparison between their outcomes and
the first best is inappropriate since they do
not achieve the same level of N reduction,
they are largely non-dominated by solu-
tions in the Pareto-frontier.33,34 The fact that
PS-optimizing and trading outcomes are

32 Recall that PS approaches involve linearizing the edge-
of-field abatement function, and that a linearization would
underestimate true abatement in the case of the edge-of-field
function being convex in abatement actions.

33 This is non-dominated in N-cost space (meaning we do not
find a solution in the tradeoff frontier that offers the same or
larger N reductions at the same or lower cost).

34 To assess cost-effectiveness,all CAC,PS,and trading outcomes
have been compared with the solutions on a Pareto-frontier; CAC
satisficing solutions are highly cost ineffective, and dominated by
a large number of Pareto-frontier solutions (dominated by 164
(20% N reduction target), 435 (30%), and 323 (40%)). Similar
numbers are observed for the PS satisficing solutions. The PS
optimizing solutions are non-dominated. Trading solutions are
non-dominated under both approaches for 20% and 30 % goals,
and dominated by one solution (satisficing approach) and two
solutions (optimizing approach) for the 40% water quality goal.
Interestingly, this is consistent with the Randhir et al. (2000)
finding that simple linear approximations do a poorer job of
approximating complex watershed relationships at larger levels
of abatement.
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Table 3. Simulated Program Performance under Varying Nitrogen Abatement Targets (abatement action costs assumed known)†

Trading, satisficing Trading, Optimizing
Target N Reduction, % Approximately Approach Total point Approach. Total Point
From Baseline (mean Optimal Solution CAC, PS, PS, Values: 20%–974,626 Values: 20%–963,658
Annual Loading, (CAC, Optimizing Satisficing Satisficing Optimizing 30%–1,419,642 30%–1,401,848
1997-2001) Approach) Approach Approach Approach 40%–1,864,908 40%–1,868,107

N Red. $, Million N Red. $, Million N Red. $, Million N Red. $, Million N Red. $, Million N Red. $, Million

20 20.73 1.8 20.8 7.2 22.2a 5.0 20.8 1.7‡ 17.3 1.2 17.0 1.2
30 30.12 3.2 30.1 19.8 31.2a 17.8 30.2 3.1 27.8 2.3 28.6 2.4
40 40.00 9.0 40.0 29.6 40.8a 28.0 39.7 8.7 36.1§ 6.7 36.2§ 6.7

†Given that the costs are assumed to be known, the optimizing CAC case represents the first-best solution, and the comparisons are made with respect to effectiveness (achieving N abatement target) and efficiency (whether
the simulated policies are a part of the efficient N abatement curve (Pareto-frontier)). Non-dominated outcomes are italicized (with specific results reported in the supplementary material online).
‡For the 20% abatement goal, we see that the CAC-optimizing approach is Pareto-dominated by the PS-optimizing approach. This is due to the fact that the empirical first-best is not exact, and that the solution obtained by
optimization heuristics (evolutionary algorithm) is being improved upon, locally, by linear programming. This kind of result has been noted in operations research literature (Whittaker et al. 2009). This was not observed for
other N reduction targets.
§Note that the quality of linear approximation appears to decrease at higher levels of abatement. A similar finding was reported (for a different watershed model) by Randhir et al. (2000).
aNote that our results support the conjecture of A(xSat

PS (w)) ≥A(xOpt
PS (w)), which would arise if higher-cost practices were generally more effective. The correlation between abatement action costs (table 1) and their effectiveness

in reducing N when applied in a uniform fashion (table S3) is 0.81.
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comparable to CAC-optimizing solutions
(approximating the first-best) suggests that
the overall mix of abatement actions and
their spatial distribution is similar to the
solutions discovered by the evolutionary
algorithm. This is indeed the case: both the
mix and the spatial distribution of abatement
actions are similar (table S.4 and figure S.3 of
the Supplementary Material).35 The results
presented in table 3 provide us with use-
ful information on the performance of the
points-based approximation to A(·) when
abatement action costs are assumed to be
known. That is, table 3 describes how effec-
tive (in terms of abatement) or cost-efficient
(in terms of lying on the Pareto-frontier) the
approximations are. Of course, under asym-
metric information, the potential gains from
the two more flexible approaches come from
the ability of the farmer who knows his/her
true costs to optimize abatement choices.

We now explore how the programs behave
in the presence of significant cost hetero-
geneity and under simulated information
asymmetry, where the regulator has some
information about the costs of conservation
practices (unbiased estimate of the mean),
but the costs vary across the farms in the
watershed. To simulate this case, we gener-
ate 1,000 random draws of u ∼ U[−0.8 0.8]
and multiply the mean estimate of costs by
(1 + u). When simulating cost heterogeneity,
we assume that for a given farm the cost of
each conservation practice receives the same
shock, u.

Some caution is warranted when inter-
preting the policy simulation results. The
results presented are based on the theoretical
performance of both the PS and the trading
program (whereby we solve the optimization
problems in equations (8) and (9) subject to
the appropriate point target constraints).36

This approach may overstate the efficiency
gains in reality, where transaction costs,
bounded rationality, and the sequential and
bilateral nature of trading or non-monetary
preferences may hinder the performance
of incentive-based policies (Stavins 1995;
Atkinson and Tietenberg 1991; Netusil and
Braden 2001; Peterson et al. 2011; Smith et al.
2012; Nguyen et al. 2013; Shortle 2013).

35 Particularly striking is the similarity between the maps of
solutions (figure S.3) discovered by the evolutionary algorithm
(CAC-optimizing) and the solution found via linear programming
(simulating the trading outcome).

36 We thank an anonymous reviewer for this caveat.

Table 4 and figures S.2–S.4 in the sup-
plementary online appendix present the
simulation results for the three chosen
abatement goals for the cost heterogene-
ity findings. The CAC (both the optimizing
and the satisficing approaches) do not allow
any variation in abatement that would result
from re-optimizing abatement practices due
to variation in costs. The satisficing CAC
approach will be inefficient regardless of the
cost draw. This inefficiency is large—for all
abatement goals, the lowest simulated cost
for the CAC-satisficing approach is higher
than the highest simulated cost for the CAC-
optimizing approach. Moreover, because the
satisficing approach involves selecting ineffi-
ciently expensive abatement actions, shocks
to the costs of abatement actions result in
much greater variability in program costs
for the CAC-satisficing approaches. As evi-
dence, we present the standard deviations
of simulated program costs, which for the
CAC-satisficing approach exceed the CAC-
optimizing approach by at least a factor of
five across the abatement goals (200,556 for
the satisficing and 38,705 for the optimizing
approaches under a 20% N abatement tar-
get). The only possible attractive feature of
a CAC-satisficing approach (the approach
that often echoes in policy questions such
as “What would it take to achieve the water
quality goal?”) is that abatement does not
depend on the realizations of costs. How-
ever, in the case that the CAC approach is
being considered, the results suggest that the
regulator can do much better by investing in
obtaining estimates of abatement action costs,
and using those estimates to target abate-
ment actions in a more cost-effective fashion.

In terms of PS approaches, as expected,
the limited flexibility provided to farmers
results in limited variation in abatement
as a result of different cost draws, but
this variation is larger under the satisfic-
ing approach than under the optimizing
approach (although the mean of abatement
is somewhat larger under the satisficing
approach), which supports our earlier expec-
tation that A(xSat

PS (w)) ≥A(xOpt
PS (w)) when

higher-cost abatement actions tend to be gen-
erally more effective. In terms of costs, once
again the optimizing approach dramatically
outperforms the satisficing approach. Should
a regulator possess good information on the
costs of abatement actions, using on-farm
performance standards appears to be an
attractive approach.
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Table 4. Simulated Outcomes under Cost Heterogeneity and Asymmetric Information†,††

Command and Control and Performance Standard Outcomes, 20% Goal

PS, CAC, optimizing PS, CAC, satisficing
optimizing (20.7% N red.) satisficing (20.7% N red.)

Cost, $/yr N, % red. Cost, $/yr Cost, $/yr N, % red. Cost, $/yr

Mean 1,665,199 20.85 1,793,057 4,950,564 22.3 7,231,175
StdDev 38,090 0.1 38,705 184,403 0.1 200,556

Trading Outcomes, 20% Goal

Optimizing Points Satisficing Points Psatisficing ∗ (K = 1.075)

Cost, $/yr N, % red. Cost, $/yr N, % red. Cost, $/yr N, % red.

Mean 927,373 17.7 950,499 17.9 1,113,597 19.5
StdDev 29,253 0.3 29,583 0.3 31,850 0.3

Command and Control and Performance Standard Outcomes, 30% Goal

PS, CAC, optimizing PS, CAC, satisficing
optimizing (30.1% N red.) satisficing (30.1% N red.)

Cost, $/yr N, % red. Cost, $/yr Cost, $/yr N, % red. Cost, $/yr

Mean 3,081,106 30.3 3,232,261 17,814,415 30.3 19,804,107
StdDev 60,465 0.1 59,303 644,392 0.1 645,923

Trading Outcomes, 30% Goal

Optimizing Points Satisficing Points Psatisficing ∗ (K = 1.075)

Cost, $/yr N, % red. Cost, $/yr N, % red. Cost, $/yr N, % red.

Mean 2,260,722 27.9 2,188,889 27.5 2,653,474 29.9
StdDev 48,061 0.2 46,943 0.2 56,049 0.7

Command and Control and Performance Standard Outcomes, 40% Goal

PS, CAC, optimizing PS, CAC, satisficing
optimizing (40.0% N red.) satisficing (40.0% N red.)

Cost, $/yr N, % red. Cost, $/yr Cost, $/yr N, % red. Cost, $/yr

Mean 8,654,175 39.9 9,010,815 27,910,009 40.9 29,573,330
StdDev 163,169 0.1 162,446 897,480 1.3 900,772

Trading Outcomes, 40% Goal

Optimizing Points Satisficing Points Psatisficing ∗ (K = 1.075)

Mean 5,382,613 37.1 5,350,838 37.1 6,907,911 39.9
StdDev 123,255 0.2 122,218 0.2 166,865 0.2

†PS and trading programs are simulated by solving equations (8) and (9), respectively. The resulting solutions’ water quality impacts are simulated
in SWAT over the fixed time interval (1997-2001). The source of N variation is solely reallocation of optimal abatement actions resulting from
re-solving equations (8) and (9).
††The equilibrium prices, corresponding to the marginal cost of N reductions implied by the abatement goal, were found to be the following for the
satisficing (optimizing) approaches: $2.17 ($2.17) for the 20% goal, $4.64 ($5.65) for the 30% goal, and $11.92 ($11.92) for the 40% goal (price per
kg N annual reduction).

As expected, either trading approach per-
forms equally well in terms of cost efficiency
and simulated variability in program costs
and abatement outcomes. Once the nonlinear
water-quality production process has been
linearized using our approach, the private
optimization involved in a well-functioning
points market makes any optimization on

the part of the regulator redundant. The only
potential drawback to the trading approach is
the possible non-attainment of the abatement
goal.

Indeed, the results indicate that the mean-
simulated trading outcomes underachieve
the specified abatement goals by 2.5–3.4
percentage points. This is expected under a
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nonlinearity in the abatement function. By
adjusting the required watershed points tar-
get upward by 7.5%, we find that this value
results in simulated trading outcomes where
the mean is approximately equal to the N
reduction goal. Clearly, without some knowl-
edge of abatement costs (so that trading
outcomes can be simulated), such inflation
coefficients cannot be obtained by the reg-
ulator. However, if the regulator has some
cost information, trading outcomes and con-
sequent non-attainment likelihood can be
simulated. The potential need for the regula-
tor to carry out such simulations represents
one of the tradeoffs associated with using a
linear approximation to the complex water
quality production process in order to be able
to use a simple trading program.

To evaluate the ability of a regulator who
has some, albeit inaccurate, cost informa-
tion to come close to selecting the right
point inflation coefficient, we investigate
how sensitive the empirically derived 7.5%
inflation coefficient is to a range of trading
outcomes. To do so, we model a regulator
who has biased information regarding abate-
ment action costs (underestimates the true
abatement costs by as little as 10% and as
much as 110%). When simulating trading
outcomes using this biased cost information,
we find that the unmodified total point value
yields, on average, 36.9% nitrogen abatement
for the 40% abatement target, which is sim-
ilar to the 37% average reduction predicted
when the regulator has unbiased information
on costs. The inflation coefficient of 1.075
selected by the regulator using biased cost
information would lead to an expected abate-
ment of 39.5%. Thus, the inflation coefficient
of 1.075 appears to be reasonably invari-
ant both to the target abatement and to the
quality of cost information available to the
regulator. This suggests that a sophisticated
regulator could simulate trading outcomes
using potentially biased cost information
prior to trading program implementation, use
the results to assess the impact of nonsepara-
bility and nonlinearity, and construct similar
approximation corrections.

Ex Post Assessment of Policies with Respect
to Abatement Risk

The actual abatement realization will be sub-
ject to the stochastic influences of weather,
climate, and other factors, and those influ-
ences may result in the proposed policies

being quite different in terms of risk.37 We
formulated the objective (equation 1) in
terms of minimizing expected pollution, and
the regulator’s problem does not involve
preferences over risk.38 However, we are able
to provide some empirical assessment, ex
post, of variability in attaining 5-year mean
nitrogen abatement targets using historical
climate data for a longer time frame. It could
be that the satisficing CAC and PS policies
that select high-cost practices might result in
lower variance of abatement. To determine
to what extent the ambient outcomes of the
three types of policies depend on historically-
observed weather variability, and to establish
whether some policies may be preferred
over others based on risk considerations, we
simulate the abatement outcomes for a time
period spanning from 1990 to 2009, based on
water quality and weather data availability
for the watershed.

By computing the five-year moving aver-
age from 1990 to 2009, we obtain sixteen
additional annual mean N values for each
policy. The mean and the standard deviation
for each of these distributions are summa-
rized in table 5.39 The standard deviations are
relatively small, representing around 15% on
the mean values. Moreover, these are similar
across abatement targets and policies. Testing
for difference in variances across satisficing
policies within the same abatement target
shows that, given the observed historical data,
policies are equally risky in terms of abate-
ment. Similar results are obtained for the
optimizing policies, with the standard devia-
tions representing around 15% on the mean
values. Testing for the difference in variances
across satisficing and optimizing policies
further shows that there is no difference in
terms of risk.40

Policy Implications, Extensions, and
Conclusions

We evaluated three simple approaches to
regulating agricultural nonpoint-source water

37 We thank the editor for pointing this out.
38 Controlling the variance of abatement (even under the

assumption of linear and separable ambient abatement function)
would also introduce nonlinearities (e.g., Shortle and Horan 2013)
and additional approximations would be required.

39 Detailed tables with these distributions are provided in the
supplementary material.

40 The null hypothesis for a test of equal variances is not
rejected (p-value > 0.3).
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Table 5. The Five-Year Moving Average of 1990-2009 N Loadings Distribution

Satisficing Policies Optimizing Policies

CAC PS Trading CAC PS Trading

20% goal
Mean (kg,N) 3,866,809 3,756,183 4,024,971 3,824,371 3,817,882 4,037,307
St.dev. (kg,N) 607,153 569,630 599,178 575,141 573,963 601,386
Average N reduction (N) 20.5 22.8 17.23 21.4 21.5 17.0

30% goal
Mean (kg,N) 3,424,873 3,356,720 3,453,769 3,337,541 3,332,835 3,412,061
St.dev. (kg,N) 549,779 527,071 508,943 491,356 490,390 499,974
Average N reduction (N) 29.6 31.0 28.98 31.4 31.5 29.8

40% goal
Mean (kg,N) 2,987,899 2,918,844 3,116,531 2,922,795 2,940,443 3,114,093
St.dev. (kg,N) 489,257 465,417 481,662 462,606 463,449 481,523
Average N reduction (N) 38.6 40.0 35.91 39.9 39.5 36.0

pollution control: the CAC, the on-farm
performance standard (PS), and a trading
system based on abatement action cred-
its (which we call “points”) under the case
where on-farm abatement actions interact
in a nonseparable and nonlinear fashion to
produce (expected) water quality outcomes.
The potential for a complex and interdepen-
dent pollution process creates endogeneity
in marginal impacts of individual abatement
actions, and largely precludes any simple
incentive-based policy from achieving first-
best (cost-efficient) outcomes, even if one
assumes that the environmental process is
known to the regulator without error. Given
perfect information on costs, the regulator
could implement a first-best solution via a
command-and-control policy, but information
asymmetries preclude such solutions. Rather,
we consider three second-best approaches
by first identifying the simplifications to the
true pollution process needed to implement
them. In progressing from CAC to a per-
formance standard and then to a trading
program, the regulator employs increasingly
simple approximations to the pollution pro-
cess, but in exchange can capitalize on private
incentives to gain cost efficiency. The rela-
tive impact of the two effects is an empirical
question that is likely dependent on the pol-
lution process modeled, and on the degree of
private cost heterogeneity.

We provide an empirical assessment for
a large agricultural watershed focusing on
nitrogen abatement, but the proposed poli-
cies apply more generally to cases where
the pollution process may have to be sim-
plified or approximated to yield workable

incentive-based policies, and where the
regulator has limited information on the
distribution of private costs of abatement
actions. Property rights are assumed to
belong to the regulator, but the presented
issues find ready counterparts in the extant
assignment of rights for nonpoint-source
pollution.

In our proposed PS and trading programs,
we rely on subsequent linear approxima-
tions to the complex and nonlinear water
quality production function to simplify the
abatement process at the edge-of-field (PS)
or both at the edge-of-field and across farms
(trading). Under a highly nonseparable
and nonlinear environmental process, we
could expect that a PS (and some cost infor-
mation) might be needed to represent the
desired spatial distribution of abatement
actions, but in our application we find that
an approximation where nonseparabilities
and nonlinearities are omitted performs well.
We also find that a well-functioning trad-
ing program would produce cost-efficient
outcomes, although we do find that setting
the total points value (akin to a cap in a
cap-and-trade program) requires a correc-
tion for the approximation error. In our
application, we argue that by employing the
tradable abatement action credit system
described in this work, we can transform the
complex nonpoint-source pollution prob-
lem into one where a simple market in one
freely tradable commodity (abatement point
credit) can be implemented, with all the
attractive cost-efficiency properties known
since Montgomery (1972), and where a sim-
ple correction ensures the attainment of
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the expected abatement goal.41 The goal
is to make the market simple for the pol-
luters, with the understanding that careful
initial analysis is needed on the part of the
regulator.

The point-credit approximation proce-
dure can also be adapted to: (a) extend the
market to multiple pollutants (using either
a single-point system where the regulator
seeks to achieve a specific point in abate-
ment space, or a system with separate point
markets for different pollutants); (b) bring
cropping choices into the point credit system
(Collentine and Johnsson 2012); (c) create
sub-watershed-scale markets; or (d) modify
the market for stochastic weather and climate
factors to try to build in some kind of “mar-
gin of safety,” or “safety-first,” considerations.
For example, echoing the approach suggested
by Shortle and Horan (2006), where trad-
ing in nonpoint-source pollution happens
in multiple markets, and where one market
focuses on the mean and other markets focus
on higher moments of pollution distribu-
tion, we can envision a related “safety-first”
points market. To estimate those points, one
would simulate a large number of possible
watershed configurations for a sufficiently
long simulation period, encompassing most of
the likely weather realizations and including
large storms, which can be responsible for a
significant share of nutrient loadings. Then
the share of simulation years where the water
quality target is reached would serve as an
estimate of the reliability of reductions, and
would subsequently be used to construct
the “risk-modified” set of points. A different
set of abatement actions (e.g., constructed
wetlands, which may be able to retain nutri-
ents even under high flow conditions (Fink
and Mitsch 2004)) may receive high credit
under targets incorporating risk. However,
we leave these extensions to future work.
Furthermore, other environmental processes
may exhibit a much greater degree of non-
separability and nonlinearity, and free trading
based on assumptions of independence and
linearity may lead to unacceptable environ-
mental performance. In those cases, perhaps
a PS approach (or even a CAC) may prove
to be a more attractive second-best policy. In
the case that trading is not able to reach the

41 And which does not require any good information on the
part of the regulator, since even severely biased cost information
can be used to simulate trading program outcomes in order to
find a good empirical approximation to the correction factor k.

theoretically predicted outcome (Shortle and
Horan’s (2013) “kryptonite” to trading pro-
posals), a PS may present a lower cognitive
burden and transactions cost alternative.

Many caveats regarding the water qual-
ity modeling process, data availability,
uncertainty over the changing climate and
hydrologic regimes, political feasibility, and
monitoring and compliance issues apply. We
believe, however, that these caveats should
not serve as an impediment to more thor-
ough consideration of the proposed flexible
approaches by the research community.
Rather, perhaps they warrant serious con-
sideration for possible implementation by
watershed managers.
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